VILLAGE POWER 2000

EMPOWERING PEOPLE AND TRANSFORMING MARKETS 4th – 8th December 2000 Washington, D.C.

Ghana: Renewable Energy for Rural Electrification

Clement G. Abavana RESPRO, Ghana

Project Budget & Implementation

- Initial Budget (3-year)
 - \$2.5 million GEF grant funds
 - \$0.5 million Government of Ghana (including \$300,000 in PV equipment)
 - ca. \$100K USDOE/NREL co-financing for technical support
- Implementation (nationally executed)
 - Ministry of Finance (executing agency)
 - Ministry of Mines and Energy (implementing agency) through the RESPRO Office
- Collaborating institutions include:
 - Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
 - NREL (United States)

Project Goals (i)

- Build in-country capacity in the use of renewable energy technologies especially PV, PV/wind, PV/Diesel hybrid power systems for sustainable rural electric power delivery, focused on
 - -Economically productive activities
 - Community services
 - -Household non-thermal energy
- Establish the technical, economic, financial, institutional and socio-cultural requirements for sustainability.

Project Goals (ii)

- Demonstrate the bankability and financial sustainability, as pre-investment prelude to commercial diffusion
- Establish technical and service performance standards for private sector service companies

Project Concept

- To have a project which addresses core issues in rural social & economic development:
 - i. Purification and pumping of clean water
 - ii. electrified dispensaries and health clinics
 - iii.refrigeration, household lighting, telecommunications, education, entertainment, public and street lighting.
- Project therefore focuses on the use of commercially proven solar PV- systems in 13 rural communities in the East Mamprusi District of Northern Ghana

Project Design

 Designed to address Ghana Government's interest in assessing the technical, economic and institutional requirements for providing renewable energy-based electricity to off-grid communities.

Original Concept

- Electric Utility Involvement
 - To provide entry-level electrification for off- grid rural communities as least cost option for the size of loads envisaged.
 - Incorporate into the on-going rural electrification programme as next best option to grid extension.
- To provide strong utility-led programme for dissemination and support for the growth of the PV market

Private Sector Response

- Equipment installation and commissioning
- Equipment supply
 - Renewable energy equipment components, systems
 - End-use equipment supply (lights, ice makers, refrigerators, grain grinders, water purification units, ..)
- Equipment maintenance, repair, replacement
- (Eventually) supply of off-grid energy services for rural and peri-urban private power concessions
- Joint venture local manufacture


Establishment of RESPRO

Without the utility involvement, the Renewable Energy Services Project (RESPRO) unit was established by the Ministry of Mines & Energy to manage the project whose inception was in February 1999.

Project in the context of the Ghana National Electrification Scheme

- All 120 district capitals in Ghana have been electrified
- Government policy: by 2020, electricity services are to be widely available to the rural and peri-urban populations,
- Innovative programmes are therefore needed to provide electricity services to off-grid communities on a sustainable and affordable basis

Requirements for Sustainable Off-grid Electricity Services

- Local operation and maintenance facilities (Nakpanduri - principal centre, other local service centres and technicians)
- Local capacity for equipment manufacture, supply, installation, maintenance, and repair
- Assured fuel security (for operations, hybrid systems)
- Supply cost <=> user's willingness and ability to pay, including any external sources of revenues to the rural energy services companies

Requirements for Sustainability

- Community participation
 - Fees for electricity and associated services
 - Needs identification
- Full cost recovery to rural energy service companies
 - Mix of community and external revenues (e.g., government infrastructure investments)
 - Willingness and ability to pay
- Co-investments in development that builds on reliable supply of electricity and electricity services
 - Ministries (water, health, education, micro-enterprise, telecommunications, etc.)

GEF Concerns

- Avoidance of GHG emissions that would have resulted from additional thermal generations to meet the rural electric load.
- Reduction in indoor pollution that would have resulted from kerosene lanterns and candles.

Implementation Issues

- Over heads are high as result of setting up a new unit
- Delayed the project
- O & M Costs very high due to remoteness of Project area
- Perception of an NGO operation providing inferior power supply and blocking the communities' chance of getting the real thing.
- Implications of non-utility involvement.

Operational Issues

- Fee-for-service
- Affordability & the Economy
 - Ability to pay (cost recovery rates)
 - Willingness to pay
 - Reality on the ground
 - Declining value of the local currency
 - Subsidized tariffs for grid-connected customers

Social Barriers

- Social justice
- Equity
- Sustainability

Political Barriers

- Political pressure:
 - Cost recovery rates vis-a-vis affordable rates
 - Election year non-policies

Table of Connections

SOLAR HOME INSTALLATIONS DONE PER MONTH			
MONTH	100WP	50WP	TOTAL
December. 1999	26	8	34
January.2000	5	1	6
February.2000	8	3	11
March.2000	19	7	26
April.2000	44	3	47
May.2000	8	1	9
June.2000	36	8	44
July.2000	27	10	37
August.2000	38	15	53
September. 2000	32	8	40
October.2000	30	8	38
TOTAL	273	72	345

Lessons Learnt (i)

- Establishment of energy services companies (ESCOs) inherently has high overheads
- In RESPRO high operating cost due to size and remoteness of project
- Clear government policy very necessary to create the PV market

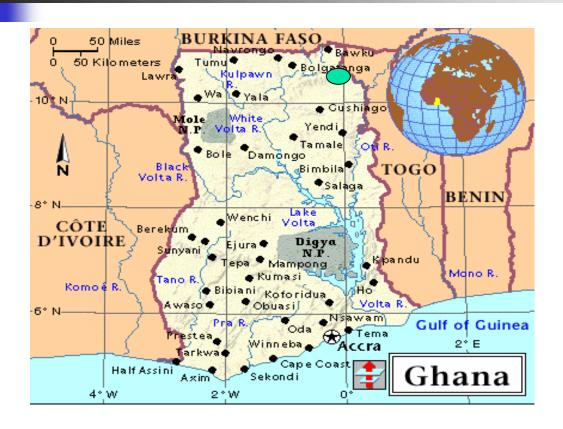
Lessons Learnt (ii)

- Mix of strategies should be employed in the implementation of PV programmes
- Suitable policy framework with appropriate financing mechanisms are necessary to encourage wider participation

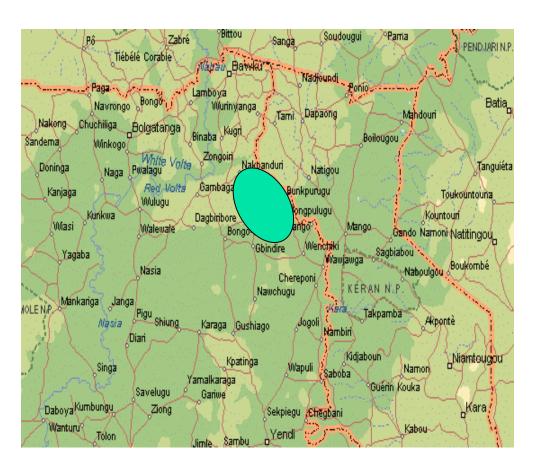
The way forward for RESPRO

- There should be utility involvement in the implementation so that optimum benefit can be derived
- The boundaries of the Project are being expanded to lower overheads
- Mode of Implementation will no longer be limited to only fee-for-service
- Energisation not electrification

Conclusions (i)


- Government should give the same level of support for solar PV as it does for grid extension rural electrification
- Solar PV and grid extension rural electrification need not be mutually exclusive.
 If properly planned they could actually complement each other.

Conclusion (ii)


- PV markets can only survive in framework of sustainable energy programmes where different stakeholders operate complementing each other's contributions. The stakeholders here are:
 - -Government (policy/regulatory framework)
 - -the power utility sector
 - -the Banks and other financial institutions.
 - -Business/private sector
 - -Society / community leaders

Map of Ghana

Map of Project Area

Project area shown as oval.

Public Installation

Retrofitted well in Binde

Health Clinic in Binde

Community Installations

 School System in Bunkpurugu for lights, TV and VCR

Domestic Installation

Home system in Yunyoo

Domestic Installation

Solar home system

Public Systems

Street Light in Bunkpurugu

Micro-enterprise



Telecommunication

 Antennae for radio telephone in Nakpanduri

